
Journal o f  Statistical Physics, 11"ol. 75. Nos. 1/2, 1994 

Anderson Localization and the Space-Time 
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A proof of Anderson localization is obtained by ruling out any continuous 
spectrum on the basis of the space-time characteristic of its states. 
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1. INTRODUCTION AND RESULTS 

By now many proofs ~'4'5' Jr)of localization for the d-dimensional Anderson 
model have been given. C o m m o n  to all of them, as to this one, is the 
derivation of some form of exponential decay tS) of the Green's function. In 
a second step, localization, i.e., absence of continuous spectrum, is then 
obtained either 1~'4'tll using results about  the behavior of the spectral 
measure under rank-one perturbations, or ~4"5'7) using that the set of 
generalized eigenvalues has full spectral measure. The purpose of this paper 
is to show that this step can be done using a characterization of the 
continuous spectrum due to Rueile ct~ and Amrein and Georgescu. (2'6~ 
Such a possibility has been conjectured in ref. 8. For  the one-dimensional 
model it has been used in refs. 3 and 9. 

We consider just the simplest case. This is the discrete Schr6dinger 
operator  

h,o = - A  + v,o 

acting on 12(7/a), where A is the discrete Laplacian 

(A~)(x)= ~ ~b(x+e) 
lel  = 1 
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and v,o is a random potential 

(v,oO)(x)=v.~(x) 

Here [xl = Za=~ [xi] and co = { v.,.}.,.~zu is a collection of independent identi- 
cally distributed random variables. We shall assume that the single-site 
probabil i ty distribution has a density peL t (R) ,  [[pl[t = 1, with respect to 
Lebesgue measure. In other words, the probabil i ty space g2=X,.~z~l~ is 
equipped with the probabil i ty measure dP(o~)= I-Ix~z~ p(v.,.)dv.,.. 

The strength of the disorder is measured by [IPl[~. 1. Localization 
occurs if the disorder is large enough. 

T h e o r e m  1. Let p e L ~ ( R )  and of compact  support .  If  Ilpl[~. is 
small enough, then h,,, has only pure point spectrum with probabil i ty 1. 

Ruelle's criterion asserts that states associated with the continuous 
spectrum leave any compact  set in the time mean. More  precisely, let E,. be 
the projection onto the continuous spectral subspace of an opera tor  h on 
/2(7/d) and let P N  ~ R be the projection onto wave functions which vanish 
in { x e Z a l  Ix l<R}.  Then 

IIf,.g, l l - '=l im ,-~.lim t ds []P,.,I~>Re "g,[[-' (1) 

f: = 2 i m  !i~o 2e ds e -2':'' IIPI.,-I >~ Re-i""tP[I -' 

= iim l i m L f d E l l P N > , R ( h - E - i E ) - ' $ l l  2 (2) 
8 ~ m e l O  7 " [ J  

The Green's  function consists of matrix elements of the resolvent 

G(x, y ; z ) =  (fix, ( h - z )  -j 6,') 

where the states 6,, are given by 6,,(m) = 6 ..... (n, m e 7/a). 

L e m m a  2. Let Ilpll ~ be small enough and 0 < s < 1. Then there are 
C, m > 0 such that 

(IG,,,(x, y; z)l ~ ) ~< Ce .... t.,--.,.I (3) 

for all z e C \ ~ ,  x, 3' e 7/a. 

Here ( . )  denotes the expectation with respect to the probabil i ty 
measure. In ref. l a similar estimate was obtained. There the Green 's  
function is regularized by going to finite volumes; here, by going to 
complex energies. 
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We then extend the result to higher moments  of the Green 's  function. 
Specifically: 

L e m m a  3. Let p be as in Lemma 2 and, in addition, of compact  
support .  Then there are C, m > 0 such that 

IIm zl (IG,o(x, y; z)l 2) ~< Ce .... t.,..,'1 (4) 

for all z ~ C\ff~, x,  y ~ Z a. 

Note that the moment  of the Green 's  function in (3) stays bounded as 
z approaches  the real axis, whereas in (4) it may diverge like IIm z l - I  
Setting z = E +  i8, we shall see that  (4) controls the expectat ion of (2). 

The  conductivity tensor as defined by the K u b o - G r e e n w o o d  formula Is~ 
is 

8 2 

g o ( E )  = lim - -  ~ x ix i ( lG ,o (O,  x; E +  is)l 2 ) 
~:J. 0 ~ .x. EZ, I  

From (4) we immediately get: 

Corollary 4: 

Go(E)=O 

2. P R O O F S  

We follow ref. 1 quite closely and begin with: 

L e m m a  5. Let 0 < s < l .  Then there is C > 0 s u c h  that 

(IG,,~(x, y; .--)I") ~< C Ilpll"~ (5) 

for all z E C\R ,  x, y ~ 7/'( 

Proof .  We assume x ~).', the case x = y  being similar but easier. The 
dependence of G,o(x, y ; z )  on v,., v.,. (at fixed values of the potential 
elsewhere) is particularly simple. To  exhibit it, one writes 

h,o = h,;, + vxP, .  + v.,,P.,. 

where o3 is obtained from 09 by setting v, = v,. = 0, and P,, = 6 , , ( 6 , , . )  are 
the projections on the states 3,,. Note  that  h,o differs from h,;, by a rank-2 
per turbat ion acting on the range of P = p , . + P y .  From the second 
resolvent identity ( h , ; , - z ) - t =  [1 + ( h , a - z )  -~ ( v , . p , . + v . , . p , . ) ] ( h , , , - z )  - t  
we obtain an identity on Ran P known as Krein's  formula: 

P(h,,, - z)  - t p = (A + vxP,.  + vyPy)  - t (6) 
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where  A = [ P ( h , ~ - z )  -~ P-] -~ ,  p rov ided  it exists, acts on Ran  P and  is 
i ndependen t  of  vx, Vy. I t  indeed exists for  z E C \ ~  because  ( I m z )  -~ 
Im(h,~ - z) -~ = (h,, - :?) - ~ (h,~ - z) -J  is posi t ive definite. In par t icular ,  

I m A  1 A * - A _ A , p l m ( h , ~ - z ) - I  
I m  z I m  z 2i I m  z 

PA 

is posi t ive definite, too.  Us ing  mat r ix  no t a t i on  with respect  to the  basis  

A = (ax.,. a.r.,./, 
,ay . ,  a.,,.,., 

we thus  have  f rom (6) 

= (  I m a  . . . . .  (1/2i)(a.~,,-~,.x)) 
Im A \(1/2i)(a. , .x-~.v) I m  a,.~. 

Go,(x, y; z) = ax~" 
(v.,. + a.,.x)(v.,. + a.,.,.) - a,.,.ay., 

(7) 

By re ta in ing  only the real, resp. the i m a g i n a r y  pa r t  of  the d e n o m i n a t o r ,  we 
get 

[ G,:yl 
IG,o(x, y; z)l ~< 

[uxu, .-  I m  a.,..,. I m  a.,. , .- Re(a.,..,.a.,.,.)l 

la.,-.,.I 
IG,o(x, y; z)l ~< 

[u,. I m  a,.,. + u.,. I m  a.,..,. - Im(a,..,.a.,,,.)[ 

with ui = vi + Re a ,  (i = x, y). M o r e o v e r ,  

det lm A = Im a,.,. Im a,.~. + ~Re(a~,.a,.~)- t . . . . . . . . .  z( la.,-.,.I- + la.,.,-I 2) > 0 

(i) We shall  first t reat  the case where  

max(  I Im ax.,.I, Jim a.,.,.I ) < �89 la.,:,.I 

Us ing  (8), we then have  

c 2 :=  Im a.,.,. I m  a.w + Re(a.,..,.a.,..,.) 

1 "~ "~ 1 2 > ~( I a.,-.,.I " +  la.,..~l " ) -  lm  a.,..,. Im  a.,..,. > z la.,.,.I 

and  thus 

(8) 

(9) 

2c 2c - ' 
IG,,,(x, y; z)l ~< 

lu , -u , . -  cZl [c Zu.,.Uy- 1 
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W e  note that for any wx, Wy ~ R 

min( I)4.'.,- - f(wy)l ,  lWy-  f(w.,.)] ) ~< ] w.,. w>.- I] ( l O )  

where n f ( w ) =  min(1, w2). Indeed, if ,'~.~> 1, then 

] w>, - -  f (  w.,. )1 - -  [w.,. - w.,7 '1 ~< I )4, ,. w.,. - 11 

and the same argument  applies if w~/> 1. If, however, w.2,., w,~ < 1, then 

[w x -- f(w.,.)] z = [ W y -  f(Wx)]  2 = (w x -- Wy) z 

= (w,. w y -  I) 2 - (1 - w2)(l - w~) < (w., w , . -  1) 2 

By ( 1 0 )  w e  estimate 

IG,o(x, y; z)l" ~ 2"(lu.,. - cf(c - lu>.)l -"  + lu>.- cf(c - I u.,.)l -") 

To estimate its expectat ion we shall use that 

Idvp(v) lv-131-'<~A-"f dvp(v)+llPll~I~ d v l v - f l l - "  
~ l v - / 3 1 ~ > -  ;. v - # l < ) .  

/].1 - - s  
[ - - s  ~<2- ' l l p l l ,+ - i_  s Ilpll~<~C, llpll~ Ilpl[~: (11) 

with C~ = (2/s) s (1 - s ) - 1  after minimizing over 2 > 0. (This estimate holds 
for a n y / ~ C  al though we use it here for t ic  R). Hence 

f dv.,. dr.,. p(vx) p(v>.) IG,~(x, y; z)t" ~< 2-2sc,/IPlI~, 

(ii) In case (9) fails, we have IIm aiil/> la,.yl/2 for i = x  or i=y. We 
shall consider only i = y, the other case being similar. Then 

[G,o(x, y; z)l ~< 
lux+ [uy lm a~.~- Im(a.,.ya,..~) ](Im a,.>.)- ll 

f . . dv, dr,. p(v.,.) p(v,.) IG,o(x, y; z)l"-<-~ 2"C, Ilpll 

By joining the results of the two cases, we see that the expectation with 
respect to vx, Vy is bounded uniformly in cb. I 

822/75/I-2-22 
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Similarly, the next tool is a version of the decoupling lemma of ref. 1. 

Lamina  6. Let 0 < s < l .  Then there is c > 0 s u c h  that 

S dv p(v)(Iv- ~lTIv-/~1") ~ c IIPlI] (12) 
Sdvp(v)(1/lv-fll ') IIPlI"Zr 

for all peL~(~)nL~(R) ,  0 $p>lO, and all fl, q eC .  

Proof. We may assume r/e R since the integral in the numerator 
becomes smaller upon replacing t/ by its real part. By translation we may 
then assume r/=0. Finally, by scaling we may assume Ilpl[,= IIPlI.~_--1. 
We then write N (resp. D) for the numera.tor (resp. denominator) of the 
fraction in (12) and distinguish between the cases (i) ~1,,I ~1111 dv p(v)>~ 1/2 
and (ii) ~H <lt~i dv p(v)> 1/2. 

(i) In this case, 

N >/flvl ~ I//I 

Ivl" ~> 2-" j" dv p(v) ~ ,,., ~ J~, dv p(v) >~ 2 -Is+'~ 

and D<~C.,. by (11). 

(ii) For any 2 > 0  

fl 1 ~ dv 1 
, ' l ~ . d v p ( v ) ~  <~ M~<;. Iv-/~l ~ 

(' 2 ; ~  2,!' -s'~ 
~< min \(I/~1- A)~.' ] ~-s-) < const. 2 I//I-" 

so that 

N~> 2" It,, i >~. 
1 

dv p(v) ~ >>. 2S(D - const. 2 I/~1 -~) 
IV-/JF 

Since 

D >~ I dv p(v) l )-~ I ,,', <,~, ~ >  (2 I/~I ,~I <,~, 
1 

dv p(v) >-~ (2 I /Yl)-" 

we find N/D>~2"(I-c2)~>const for some constant c and 2 = ( 2 c ) - ' .  I 

Proof  of  Lemma 2. ~j~ According to (7), we have 

(2 
G,~(x, y; z ) = - -  (13) 

/ ) y  - -  1~ 
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where c~, fl depend on {/)i}iv~.v, but not on v.,.. By taking the x y  matrix 
element of ( h , o - z )  -J ( h , o - z ) =  ~, we obtain for y # x  

G,~(x, y+e;z)=(v,,-z)G,o(x, y;z) 
lel = I 

and hence 

IG,o(x, y + e; z)l ~ >1 I v , . -  zp" IG,,,(x, y; z)l" 
lel = I 

We then take expectations using (13), (12), 

( ~ , ~  , , G , o ( x , y + e ; z ) l ' ) > ~ ( l v y - z l ' l G , o ( x , y ; z ) , " )  

- - s  

>_-c IIPlI~ (IG,o(x,  y ;z ) l~ )  

If y + e # x  for l e l=  1, this can be iterated. More  precisely, it can be 
iterated I x - y l  times and the terms generated can be estimated by (5): 

( 2 d ) l r - y l  

( I G , o ( x , Y ; Z ) l S ) < ~ (  c - l  //PI/"~-.) I ' - ' '1  Z ( IG , o ( x , ) ' " ) ; z ) l  ~) 
i = 1  

~< (2de ~ Ilpll~ )1.,--.,t C Ilpll ~ - C Ilpll~ e -m I.,--.,t _ : x : , - -  

with e - m = 2 d c  -~ Ilpll~. If Ilpll~. is small enough, we have m > 0 .  1 

P r o o f  o f  Lernma  3. We consider the Hamil tonian  ~t~ obtained from 
h,o by wiggling the potential  at x, namely 

h,o.,. = h,o + x P x  = h,o + ,.~, 

The space 12x R ~ ( w ,  x) is given the probabil i ty measure dP(co, K)=  
p(v.,. + x ) d x  dP(co). As a result expectations related to h,o and to h ...... are 
the same. That  is, for any P-measurable  function f on (2 

I dP(co) ~ dP(og, f (co  + x~.~) (14) f(co) K )  

By the resolvent identity ( h,o - z ) - ~ = [ 1 + x( h,~ - z)  - l P.,. ]( h ..... - z)  - 1 we 
have 

G,o(x, y; z)  1 G,~(x, y; z)  
G ....  (x, y; z ) =  

1 + xG,o(x, x; z)  - x + G,o(x, x; z ) -  ~ G,o(x, x; z)  
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for all y �9 ;yd. In particular, since IG ..... (x, x; z)l ~< IIm zl - '  for all x �9 R we 
have lira G,o(x, x; z)-~l /> IIm zl. Thus 

IIm zl .  IG .... (x, y ;z )12~  
I I m G , o ( x , x ; z ) - ' [  IG,o(x,y;z)[ 2 

I x + G , o ( x , x ; z ) - l l  2 [G,o(x,x;z)l 2 

On the other hand, we also have 

I l m z l - I G  .... (x, y;z) l  2~<llmzl ~ IG .... (x, y ' ;z) l  z 
y '  e Z a 

= l l m z l  (6.,.,(h .... - z )  -~ (h,o.~-e)  ~6.,.) 

IIm G,o(x, x; z ) - l l  
= l l m G  ..... ( x , x ; z ) [ -  

Ix + G,o(x, x; z ) -  ll 2 

Let O < s <  1. Using that min(1, t2)~< t s for t~>O, we combine the above two 
estimates as 

I ImG, , , (x ,x ; z ) -~ l  IG,o(x, y;z) l  s 
lira zl .  IG ..... (x, v; z)l 2 ~< Ix + G,o(x, ~ ) - - ~ ( 2  lG,o(x,  x; z)l ~ 

We then claim that 

1 
,.~SUPc IImwl .Iwl~fd,~p(v., .+~)~< +oo (15) 

t,~ ~ s u p p  p 

so that upon using (14) and (3) we obtain 

IIm zl (IG,o(x, y; z)[ 2 ) ~< const �9 (IGo,(x, y; z)l s)  ~< const . e - "  Mx-.,.M 

To prove (15) we note that by IwlS~ Ixl~'+ I~c+ wl s we need to estimate 

IIm wl f dx P(G + x)I~cl s -  
IK+wl 2 

and 

1 P 

IIm wl j dx p(vx + x) 
i~c-t- wl z - s  

~< min(lIm wl-~'-s~, const .  IIPlI~ Ilm "10  = const .  IlPll ~-" II 
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Proof  o f  Theorem 1. We first prove (1). By Wiener's theorem (see, 
e.g., ref. 3) we have for any states r ~b 

lim -1 ds I(~P, e - ' ~ ) l  -~ = Y. I(r E({A})~P)[ 2 

where E(-) is the projection-valued measure associated with h. Using 
P N  < R = ~.1.~1 < R 6x(6.,., �9 ), this yields 

lim ds ]lel~l. ~>Re-" ..... ~11 2 
t ~ :/3 

= [ItPll2- ,~.tlim -1 ;odS IIPI.,.I<Re "r 

= II~II 2 -  ~ IIP,.,-,<RE({d-})~Jll 2 
2 E R  

= IIE,.@II2-1 - ~ [llE({2})tfil l  2 -  IIP~.,I<RE({zl.})tPll 2] 

= IIE,.tPll2.4 - ~ IIPN~RE({2})~II 2 

from which (1) follows. This in turn implies (2) by means of an Abelian 
limit and of Parseval's identity. If l c  R is a compact set containing the 
spectrum a(h) in its interior, we have 

e IR dEl lPl . , . l>~R(h-E-ie)  -~ ~&ll 2 
\ /  

~ e I ~  d E l J ( h - E - i e ) - '  g, ll 2 
\ I  

~EII~OII z sup f d E l 2 - E - - i e l  -2 , 0  
.;. E a(h) ~ R \ /  r. l O  

Since 11311 ~<2d we have a(h,o)c  [ - 2 d ,  2d] + s u p p p c I  for some fixed 
compact L with probability 1. Hence 

IlE,o.,.fio[I 2 = lim lim ~ f  dE [IPN~>R(h,o- E-- i e )  - l  &oil z 
R ~ w .  e l 0  /1: I 

= lim l i m e - f  dE ~ IG,,,(x,O;E+i~)t 2 
R ~ ,  ~J,O ~ al i .x. l~>R 
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almost surely. By Fatou's lemma and (4) we conclude 

(llEo~,c,5oll2)~< lim lim ~ f  R - ~  ~lo-~otdE ~. ([G,o(x,O;E+ie)[ 2) 
Ixl >~ R 

C III e .... I.,.I ~< lim ~ = 0  
R ~  ixl>~R 

Similarly, E,o.,.6x=0 almost surely for any x e Z  d, i.e., E,o.,.=O. | 
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