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Anderson Localization and the Space-Time
Characteristic of Continuum States
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A proof of Anderson localization is obtained by ruling out any continuous
spectrum on the basis of the space-time characteristic of its states.
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1. INTRODUCTION AND RESULTS

By now many proofs**>'" of localization for the d-dimensional Anderson
model have been given. Common to all of them, as to this one, is the
derivation of some form of exponential decay'® of the Green’s function. In
a second step, localization, i.e., absence of continuous spectrum, is then
obtained either'"-*'" using results about the behavior of the spectral
measure under rank-one perturbations, or®>”' using that the set of
generalized eigenvalues has full spectral measure. The purpose of this paper
is to show that this step can be done using a characterization of the
continuous spectrum due to Ruelle”"” and Amrein and Georgescu.*®
Such a possibility has been conjectured in ref. 8. For the one-dimensional
model it has been used in refs. 3 and 9.

We consider just the simplest case. This is the discrete Schrédinger
operator

h,=—4+v,

acting on /*(Z“), where 4 is the discrete Laplacian

(d)x)= 3 Y(x+e)

lel=1
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and v, is a random potential

(Vo )x) =0 Y(x)

Here |x| =Y, |x,| and w = {v,} __ ,«is a collection of independent identi-
cally distributed random variables. We shall assume that the single-site
probability distribution has a density pe L'(R), |p|l, = 1, with respect to
Lebesgue measure. In other words, the probability space 2=X_ ;R is
equipped with the probability measure dP(w)=T1.. p(v,) dv,.

The strength of the disorder is measured by |p| ;' Localization

occurs if the disorder is large enough.

Theorem 1. Let pe L*(R) and of compact support. If ||p|.. is
small enough, then A, has only pure point spectrum with probability 1.

Ruelle’s criterion asserts that states associated with the continuous
spectrum leave any compact set in the time mean. More precisely, let £, be
the projection onto the continuous spectral subspace of an operator 4 on
[*(Z?) and let P, 5 & be the projection onto wave functions which vanish
in {xeZ’||x| <R}. Then

IEYIP= lim lim — [ ds [Py 5 ge ™Y ()
R—w 1~x lJp
= lim lim2e [ dse | Pys e Y2
R—-x €]0 0
. . 5 . L1 )
= lim 11m—deIIPl_ﬂ;R(h—E—la) "k 2)
R—x ¢]0OT

The Green’s function consists of matrix elements of the resolvent
G(xa ¥, :) = (5,r1 (h - Z)_ ! 5|)

where the states §, are given by 6,(m)=4,,, (n, me Z9).

mn

Lemma 2. Let ||p|, be small enough and 0 <s < 1. Then there are
“C, m>0 such that

<|G,,,(,\‘, y;:)l-"> <C€_"' Jx — vl (3)
for all ze C\R, x, yeZ“

Here ¢-) denotes the expectation with respect to the probability
measure. In ref. | a similar estimate was obtained. There the Green’s
function is regularized by going to finite volumes; here, by going to
complex energies.
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We then extend the result to higher moments of the Green’s function.
Specifically:

Lemma 3. Let p be as in Lemma 2 and, in addition, of compact
support. Then there are C, m >0 such that

I 2| |Gy (x, y; 2)|2) < Ce™ ™11 (4)

for all ze C\R, x, yeZ“.

Note that the moment of the Green’s function in (3) stays bounded as
= approaches the real axis, whereas in (4) it may diverge like [Imz|~".
Setting = = E + ie, we shall see that (4) controls the expectation of (2}.

The conductivity tensor as defined by the Kubo-Greenwood formula‘®
1S

o E)=limE= T x,x,¢|Go(0, x; E+ie)[?)
' el0O T oqe
From (4) we immediately get:
Corollary 4:
(E)=0

g

2. PROOFS
We follow ref. 1 quite closely and begin with:

Lemma 5. Let 0 <s< 1. Then there is C >0 such that
G (x, yi N> <C el (3)
for all ze C\R, x, yeZ“.

Proof. We assume x # y, the case x =y being similar but easier. The
dependence of G,(x, y;z) on v,, v, (at fixed values of the potential
elsewhere) is particularly simple. To exhibit it, one writes

h,=hs+v P . +v, P,

where @ is obtained from w by setting v, =v,=0, and P,=6,(5,,-) are
the projections on the states §,. Note that &, differs from /1, by a rank-2
perturbation acting on the range of P=P, + P.. From the second
resolvent identity (h,—z) '=[1+(h,—z)"" (v, P.+v.P)](h,—2)""
we obtain an identity on Ran P known as Krein’s formula:

P(h,—z) ' P=(A+v P +v,P)"" (6)
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where 4={P(h,—z)~' P]~!, provided it exists, acts on Ran P and is
independent of v., v,. It indeed exists for ze C\R because (Imz)~!

Im(h,—z) " '=(h,—Z2)" "' (h,—z)" ' is positive definite. In particular,
Im A 1 A*—-4 Im(h,—z)""
—_ = —gxp___ w0 7 PA
Imz Im:z 2§ AP Im -

is positive definite, too. Using matrix notation with respect to the basis
{6.,6,},

_ ey Ay, _ Im Ayx ( 1/21)(‘1\'1 - a_\\)
= e ma=(e o )

a )(ayx - a.\',r) Im a,,

we thus have from (6)

a
Xy 7
(U_r + Ay )(U". + ayy) - a.\'_r ayx ( )

Gw(x’ Ys :) = -
By retaining only the real, resp. the imaginary part of the denominator, we
get

|a.\'.r,
lu,u,—Ima, Ima, —Re(a,.a,.ll

|Go(x, ¥ ) <

|a.,|

|Go(x, y;2)| <
° lu,Ima, +u Ima, —Im(a,a,ll

with u;=v,+ Re a; (i=x, y). Moreover,
detImA=Ima, Ima, +iRe(a,a,)—ila,l*+]a.*)>0 (8)
(i) We shall first treat the case where
max(|Im a,,|, [Tm a,,|) < $la,,| (9)
Using (8), we then have

2

c*:=Ima, Ima, +Re(a,,a,,)
>i(la,l*+la,*)—Ima, Ima,.>ila,l’

and thus

2¢ 2c7!

|ux u,— CZI |C B 2“.\' Uy, — 1 |

1Go(x, yi2)l <



Anderson Localization 31

We note that for any w, w, eR
mln( | "".\' - f( H"_\')l’ |"")' —f( "’Y.\'” ) < l““.\' M’y - 1 I (10)

2

where wf(w)=min(1, w?). Indeed, if w2 > 1, then

X
Wy = fOw ) =Dy —w ' < D ow, — 1]

2

2> 1. If, however, w2

X?

and the same argument applies if w w2 < 1, then
g pp 3

[wx _f(wy)]z = [W“. _f(wx)]z = (Wx - w_r)2

=(ww,— 1= (1=w2)(1—wl)<(ww,—1)

By (10) we estimate

G, 3 2 < 2w, —ef (¢ " Mu )l ™+ luy — of (e~ 'u )l ™)

To estimate its expectation we shall use that

[dop@)lo—pis<a=|  dpw)+lpl [ dolo—p
lo—f1=4 lv—fBl<i
-5 ZAI—X f—s s
<A lol+ T Il <Cololi ol (D)

with C,=(2/s)° (1 —s) ™' after minimizing over 2> 0. (This estimate holds
for any feC although we use it here for fe R). Hence

[ o v, p(0,) p(0,) 1Gutx, 33 20 <2-2C, I,

(ii) In case (9) fails, we have |Ima;| >|a,,|/2 for i=x or i=y. We

"

shall consider only i =y, the other case being similar. Then

2
Iu.\' + [uy Im Aoy — Im(axya_rx)](lm a_v_v) - ll

[Golx, y;2)l <
f dv dv, p(v.) p(v,) |G (x, y; 2)I <2°C; |lpll %

By joining the results of the two cases, we see that the expectation with
respect to v, v, is bounded uniformly in@. [

822/15/1-2-22
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Similarly, the next tool is a version of the decoupling lemma of ref. 1.

Lemma 6. Let 0 <s< 1. Then there is ¢ > 0 such that

favp()lo—nl/lv—B1" _ lelli
=
§ do p(v)(1/lv—BI") ol

forall pe L"\\R)n L™(R), 0 # p=>0, and all 8, neC.

(12)

Proof. We may assume ne€ R since the integral in the numerator
becomes smaller upon replacing n by its real part. By translation we may
then assume n=0. Finally, by scaling we may assume |p|,=|p|l.=1.
We then write N (resp. D) for the numerator (resp. denominator) of the
fraction in (12) and distinguish between the cases (i) {55 dv p(v) = 1/2
and (ii) §,. < g dv p(v) > 1/2.

(i) In this case,

[v]* _ e
N> dv p(v) =227 dop(p)=2-+D
szlm lv—BI’ I|-~|>m|

and D<C, by (11).
(1) For any A>0

1 1
dv p(v) ——=< dv ————
'[Ms«: P [v— B’ fln'lsl lv— B

<min< 24 ul_s><co t-A1B°"
S — B nst- 4 )
(1Bl =4y, 1—s
so that
1
Nz dv p(v) -2 A(D —const -4 |f] %)
ol > lv— B’
Since
1 ., 1 s
D[ wp)—=2@IB) [ dvpo)>5 (2181
Iel <151 lv— Bl lol <11 2
we find N/D > A*(1 — cA) > const for some constant ¢ and A= (2¢)"". |
Proof of Lemma 2.""" According to (7), we have
o

Golx, yiz)= (13)

U". - ﬁ
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where «, § depend on {v;},.,, but not on v,. By taking the xy matrix
element of (A, —z)~"' (h,—z)=1, we obtain for y #x

Y Gulx, y+ez)=(v,—2)G,(x, y;2)
lel =1
and hence

Y G, y+e ) 2o, — 21 |Gy lx, i 2)*

le] =1

We then take expectations using (13), (12),

< T 1Gu(x, y+e;zw> > oy~ 2 1Go(x, y3 D)

let=1

Zclpl S’ AGu(x, 3 2)1°)

If y+e#x for |e|=1, this can be iterated. More precisely, it can be
iterated |x — y| times and the terms generated can be estimated by (5):

(2d)v -

UG (x, D> <le Mol X UGy )1

i=1

<(2de M1l )< Cllplls, = C liplls, e
with e =" =2dc™" |Ip|I>,. If ||p|l.. is small enough, we have m>0. |

Proof of Lemma 3. We consider the Hamiltonian!!! obtained from
h,, by wiggling the potential at x, namely

ha).l\‘ = h(u + KPX = h(u + KOy
The space 2xR>(w, k) is given the probability measure dP(w, k)=

p(v.+ k) dx dP(w). As a result expectations related to 4, and to A, are
the same. That is, for any P-measurable function f on £

[ dP() flw) = [ dP(w, k) flo +x3.) (14)
By the resolvent identity (h,—z)~'=[1+x(h,~z)""' P, )(h, .—z) ' we
have

G ( . ")— Gw(x’ y’ Z) —_ 1 ‘Gm(x, ya Z)
AR +KG (%, x;2) K+Gu(x,x;2)"" Glx, x;2)
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for all ye Z% In particular, since |G, .(x, x; z)| <|Im z| ' for all ke R we
have |Im G(x, x;z) ™| = |Im z|. Thus

IIm G (x, x;2) "' |Gu(x, ¥;2)?
I 2| - G (x, y:z 2< w . w J
I m I | m,k(x y )I |K+Gw(X, X;Z)_llz IGm(xs .\';Z)IZ

On the other hand, we also have

|Im2|'|Gw.R(x$ y,z)|2<|lmz| Z IG(u,x(x, ,v,;z)lz

vezd
= |Im Zl (5_\-a (hw.x_z)_l (hw.r\'_‘:)71 6\)
_Im Gy(x, x;2) 7"
Tk +Gu(x, x;2) 72

=[Im G, (x, x; z)|

Let 0 < s < 1. Using that min(1, #*) < ¢° for + >0, we combine the above two
estimates as

IIm G,(x, %;2) 7' |G(x, yi2)I°

IIm 2| - |Gy o, 3 2)I2 < .
e K+ G(x, x:2) 1P |G u(x, x: 2)|°

We then claim that

sup |Im w| -]wl"'J'drc plo +K)—
weC |K+W|
v ESUpPp p

< +0o0 (15)

so that upon using (14) and (3) we obtain

IIm z| {|G,(x, y; 2)I*) <const - {|G,,(x, y; 2)|*> < const e~~~
To prove (15) we note that by |w|*<|k|*+ |x + w|* we need to estimate

[Tm w] de plo.+ k) |K|‘Ym

<7kl oo+ K)o <70 Nloll o + 1A p(A)ll )

and

[Im w| de p(U_\,+K)m

< min(|Im w| =" ~*), const - |p|| . [Im w|*) =const - |l }* 1
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Proof of Theorem 1. We first prove (1). By Wiener’s theorem (see,
e.g., ref. 3) we have for any states ¢, Y

lim — jdsmp, “h)2 =Y (@, E{ANY)I?

ieR

where E(-) is the projection-valued measure associated with h. Using
PI.\'I <R= lel <R 5.\—(6_\-’ ‘ )v thiS ylelds

im = [* ds 1Py pe =917

t— >

2 N L —ihs, 2
= |¢|° — lim ‘I ds ||P|.\'|<Re ’"'p"-
r—x It Jg

=¥ = X IPq<zE{ADYI?

ieR

=IEYIP+ Y TIEADYI® = 1Py < n E{A1)YI]

ieR

=IEYIP+ X 1Py E({A})YI?

/ER

from which (1) follows. This in turn implies (2) by means of an Abelian
limit and of Parseval’s identity. If /< R is a compact set containing the
spectrum o¢(h) in its interior, we have

e dENP;alh—E= i) Y1
R\/

<af dE l(h—E—ie)~" y|

RN/

<ellll? sup j dE|i—E—ig] >—— 0

10
sea(h) YR\ el

Since ||4| <2d we have a(h,)c=[—2d, 2d] +supp p=1 for some fixed
compact [/, with probability 1. Hence

IE .30l = Jim lim > [ dE|Pyys alhy — E—ie) ™' 8ol

- el0T

= lim lim - jdE Yo

Roz elOT x| =R

(x,0; E+ig)l?

(u
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almost surely. By Fatou’s lemma and (4) we conclude

NEy.c0ll*> < i_ ln

jdE Y (IGu(x,0; E+ig)]*)

Ixt= R

X

9

1] .
S lim Z —mI\I
|2 R

T Rooc iy

—_—

E-]

Similarly, E, .6, =0 almost surely for any xe Z¢, ie.,, E, .=0. |
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